Templates
Templates define what a Flow does.
They specify the workflow, accepted inputs, configurable parameters, and produced outputs.
You choose a template to tell the Flow what to do.
Each template is executed inside a Flow and always follows the same lifecycle:
create → poll → download
Available Templates
model_generate_fromprompt
Category: Assets → 3D Model
Generate a 3D model from a text description.
Inputs
text/plain(prompt)
Parameters
quality(string, default:"high")"low"or"high"
seed(integer, default:-1)-1= random seed
texture(boolean, default:true)- Generate PBR textures
Outputs
model/gltf-binary(GLB)
Example JSON
{
"template": "model_generate_fromprompt",
"parameters": {
"quality": "high",
"texture": true
},
"inputs": [
{
"data": "A modern office chair with armrests"
}
]
}
model_generate_fromimage
Category: Assets → 3D Model Generate a 3D model from an image or sketch.
Inputs
image/pngimage/jpegimage/tiffimage/webp
Images must be provided as base64 or data URLs when using JSON requests.
Parameters
quality(string, default:"high")seed(integer, default:-1)texture(boolean, default:true)
Outputs
model/gltf-binary(GLB)
Example JSON
{
"template": "model_generate_fromimage",
"parameters": {
"quality": "high",
"texture": true
},
"inputs": [
{
"data": "<base64-or-data-url-image>"
}
]
}
model_optimize
Category: 3D Model → Enhanced 3D Model Optimize an existing 3D model for performance.
Inputs
model/gltf-binary(GLB)
Parameters
-
polygon_count(integer, default:100000)- Target polygon count
Outputs
model/gltf-binary(optimized GLB)
Example JSON
{
"template": "model_optimize",
"parameters": {
"polygon_count": 50000
},
"inputs": [
{
"data": "<glb-file-or-url>"
}
]
}
Getting Template Information via API
List templates
import requests
API_KEY = "your-api-key-here"
BASE_URL = "https://flows.generio.ai"
headers = {"Authorization": f"Bearer {API_KEY}"}
response = requests.get(f"{BASE_URL}/templates", headers=headers)
templates = response.json().get("templates", [])
for t in templates:
print(t["name"])
Get a specific template
response = requests.get(
f"{BASE_URL}/templates/model_generate_fromprompt",
headers=headers
)
template = response.json()["template"]
print(template["name"])
print(template["description"])
print(template["parameters"])